Login / Signup

Molten-Volcanic-Ash-Phobic Thermal Barrier Coating based on Biomimetic Structure.

Yiqian GuoWenjia SongLei GuoXinxin LiWenting HeXudong YanDonald B DingwellHongbo Guo
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
Volcanic ash is a major threat to aviation safety. The softening/melting temperatures of volcanic ash lie far below typical aero-engine operating temperatures. Thus, molten ash can accelerate the failure of thermal barrier coatings (TBCs). Here, inspired by natural superhydrophobic surfaces (e.g., the lotus leaf), a molten-volcanic-ash-phobic TBC, which provides a large possibility to eliminate molten ash issues of TBCs, is developed. A hierarchically structured surface is first prepared on a (Gd 0.9 Yb 0.1 ) 2 Zr 2 O 7 (GYbZ) pellet by ultrafast laser direct writing technology, aiming to confirm the feasibility of the biomimetic microstructure to repel molten volcanic ash wetting. Then biomimetic-structured GYbZ TBCs are successfully fabricated using plasma spray physical vapor deposition, which reveals "silicate" phobicity at high temperatures. The exciting molten-volcanic-ash-phobic attribute of the designed surfaces is attributed to the lotus-leaf-like dual-scale microstructure, emulating in particular the existence of nanoparticles. These findings may be an important step toward the development of next-generation aviation engines with greatly reduced vulnerability to environmental siliceous debris.
Keyphrases
  • municipal solid waste
  • sewage sludge
  • heavy metals
  • anaerobic digestion
  • white matter
  • high resolution
  • escherichia coli
  • multiple sclerosis
  • biofilm formation
  • pseudomonas aeruginosa