Athermal and Soft Multi-Nanopatterning of Azopolymers: Phototunable Mechanical Properties.
Bowen YangFeng CaiShuai HuangHaifeng YuPublished in: Angewandte Chemie (International ed. in English) (2020)
Imprinting nanopatterns on flexible substrates has diverse applications in advanced fabrication. However, the traditional thermal nanoimprint lithography (T-NIL) often causes shrinkage upon cooling. Here, a simple yet versatile method is introduced to fabricate multiple nanopatterns on a flexible substrate coated with an azopolymer by combining athermal nanoimprint lithography (AT-NIL) and photolithography. The azopolymer has various mechanical properties upon photoirradiation: 1) phototunable glass-transition temperatures (Tg ) and concomitantly photoinduced switch from glassy plastic to viscoplastic polymer; 2) prominent modulation of viscoplasticity under light illumination at different wavelengths. Regionally selective multiple nanopatterns are conveniently fabricated, presenting angle-dependent structural color images on poly(ethylene terephthalate) (PET) substrates. The flexible, athermal and multiple nanopatterning method has the potential for on-demand fabrication of complex nanopatterns.