Login / Signup

Physiological trait coordination and variability across and within three Pinus species.

Steven P AugustineKatherine A McCulloh
Published in: The New phytologist (2024)
Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO 2 -response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.
Keyphrases
  • genome wide
  • climate change
  • genetic diversity
  • risk assessment
  • mass spectrometry
  • liquid chromatography