Standardized Reporting of Research on Exosomes to Ensure Rigor and Reproducibility.
Anita YadavYi XuanChandan K SenSubhadip GhatakPublished in: Advances in wound care (2024)
Significance: The study of extracellular vesicles (EVs), especially exosomes, has unlocked new avenues in understanding cellular communication and potential therapeutic applications. Recent Advances: Advancements in EV research have shown significant contributions from the International Society for Extracellular Vesicles (ISEV), in establishing methodological standards. The evolution of the Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines from 2014 to 2023 reflects enhanced research rigor and reproducibility. The launch of EV-TRACK platform promotes uniformity and reproducibility by providing a centralized repository for data sharing and standardization practices. Furthermore, databases like EVpedia and ExoCarta have facilitated data sharing and collaboration within the scientific community. Concurrently, exosome-based therapies have emerged as a forefront area within regenerative medicine and targeted drug delivery, showcasing the potential of exosomes in promoting tissue regeneration. Critical Issues: Despite advancements, the field grapples with challenges such as vesicular heterogeneity, EV isolation complexity, and standardization. These issues impact research reproducibility and clinical applications. The inconsistency in exosomal preparations in clinical trials poses significant challenges to therapeutic efficacy and safety. Future Directions: The review outlines critical areas for future research, including the need for technological innovation in EV isolation and characterization, the establishment of standardized protocols, and a deeper understanding of exosome biology. The review also highlights the need to reassess guidelines, develop new EV isolation and characterization technologies, and establish standardized protocols to overcome current limitations. Emphasis is placed on interdisciplinary research and collaboration to address the complexities of EV biology, improve clinical trial design, and ultimately realize exosome's therapeutic and diagnostic potential. Continued evaluation and rigorous scientific validation are essential for successful exosome integration.
Keyphrases
- clinical trial
- stem cells
- mesenchymal stem cells
- drug delivery
- healthcare
- big data
- health information
- electronic health record
- current status
- social media
- primary care
- cancer therapy
- phase ii
- emergency department
- clinical practice
- mental health
- single cell
- open label
- bone marrow
- machine learning
- risk assessment
- adverse drug
- drug release
- deep learning
- wound healing