Login / Signup

Influence of Backbone Regioregularity on High-Mobility Conjugated Polymers Based on Alkylated Dithienylacrylonitrile.

Dizao LiQiang WangJianyao HuangCongyuan WeiWeifeng ZhangLiping WangGui Yu
Published in: ACS applied materials & interfaces (2019)
We designed and synthesized two donor-acceptor type conjugated polymers, the regioirregular polymer RI-PDPP-CNTVT-6 and its regioregular counterpart RR-PDPP-CNTVT-6, based on diketopyrrolopyrrole (DPP) and alkylated dithienylacrylonitrile (CNTVT) units. Among them, the 2-decyltetradecyl side chain on the DPP acceptor unit and the hexyl side chain on the CNTVT donor unit were used to ensure enough solubility for them. The backbone regioregularity was used to tune electronic structures and carrier transport of the conjugated system. The two conjugated polymers were characterized for their thermal, photophysical, electrochemical, and solution-processable properties, thin-film microstructures, and morphologies. The top-gate bottom-contact configuration organic field-effect transistor (OFET) devices based on these two conjugated polymers showed excellent ambipolar performances. Remarkably, the regioirregular polymer RI-PDPP-CNTVT-6 exhibited higher charge-carrier mobilities than the regioregular counterpart polymer RR-PDPP-CNTVT-6 did, as their highest hole/electron mobilities (μhmax/μemax) were 1.48/1.27 and 0.48/0.052 cm2 V-1 s-1, respectively. Moreover, the influence of backbone regioregularity on its thermal stability, electrochemical and photophysical properties, solution processability, and charge-carrier mobility was intensively studied. Our results afforded a promising pathway toward the development of excellent ambipolar OFETs with high performance, good solution processability, and thermal stability.
Keyphrases
  • solar cells
  • photodynamic therapy
  • gold nanoparticles
  • ionic liquid
  • label free
  • perovskite solar cells
  • electron transfer