Login / Signup

Proteomic analysis of infected primary human leucocytes revealed PSTK as potential treatment-monitoring marker for active and latent tuberculosis.

Benjawan KaewseekhaoSittiruk RoytrakulYodying YingchutrakulKanin SalaoWipa ReechaipichitkulKiatichai Faksri
Published in: PloS one (2020)
Markers for monitoring clearance of Mycobacterium tuberculosis (Mtb) infection during anti-TB drug treatment could facilitate management of tuberculosis (TB) treatment, but are lacking. We aimed to screen for Mtb clearance markers from in-vitro-infected leucocytes and to evaluate these markers in followed-up active TB (ATB) patients and latent TB (LTBI) cases after anti-TB drug treatment. Extracellular proteins from primary leucocytes infected with each of the Mtb lineages (East-Asian, Indo-Oceanic, Euro-American and the laboratory strain H37Rv) were screened as possible clearance markers. Leucocytes infected with Staphylococcus aureus acted as controls. The proteomic analysis was performed using GeLC-MS/MS. Several quantitative and qualitative candidate clearance markers were found. These proteins were suppressed during the infection stage of all Mtb lineages and re-expressed after bacillary clearance. PSTK, FKBP8 and MGMT were common clearance markers among the four Mtb lineages in our model. Only PSTK was a potential clearance marker based on western blot validation analysis from culture supernatants. The PSTK marker was further validated with western blot analysis using serum samples (n = 6) from ATB patients and LTBI cases during anti-TB drug treatment, and from healthy controls (n = 3). Time-dependent increase of PSTK was found both in ATB and LTBI patients during the course of anti-TB drug treatment, but not in healthy controls. We have demonstrated that PSTK is a potential treatment-monitoring marker for active and latent TB.
Keyphrases