Login / Signup

Collectivity in ionic liquids: a temperature dependent, polarizable molecular dynamics study.

András SzabadiPhilipp HoneggerFlora SchöfbeckMarion SapplEsther HeidOthmar SteinhauserChristian Schröder
Published in: Physical chemistry chemical physics : PCCP (2022)
We use polarizable molecular dynamics simulations to study the thermal dependence of both structural and dynamic properties of two ionic liquids sharing the same cation (1-ethyl-3-methylimidazolium). The linear temperature trend in the structure is accompanied by an exponential Arrhenius-like behavior of the dynamics. Our parameter-free Voronoi tessellation analysis directly casts doubt on common concepts such as the alternating shells of cations and anions and the ionicity. The latter tries to explain the physico-chemical properties of the ionic liquids based on the association and dissociation of an ion pair. However, cations are in the majority of both ion cages, around cations and around anions. There is no preference of a cation for a single anion. Collectivity is a key factor in the dynamic properties of ionic liquids. Consequently, collective rotation relaxes faster than single-particle rotations, and the activation energies for collective translation and rotation are lower than those of the single molecules.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • molecular dynamics
  • room temperature
  • density functional theory
  • healthcare
  • molecular docking
  • social media