Login / Signup

Cleavage of Abasic Sites in DNA by an Aminoquinoxaline Compound: Augmented Cytotoxicity and DNA Damage in Combination with an Anticancer Drug Chlorambucil in Human Colorectal Carcinoma Cells.

Chandra Sova MandiTridib MahataDipendu PatraJeet ChakrabortyAchyut BoraRitesh PalSanjay Dutta
Published in: ACS omega (2022)
The elevated level of endogenous oxidative DNA damage and spontaneous deamination of DNA bases in cancer cells substantially increase the abasic sites in DNA via base excision repairs (BERs). Thus, the predominant BER pathway is a favorable target for cancer therapy. Interestingly, elevated levels of glutathione (GSH) in certain cancer cells, such as colon cancer, are associated with acquired resistance to several chemotherapeutic agents, which increase the difficulty for the treatment of cancer. Here, we have reported an ideal nitro group-containing monoquinoxaline DNA intercalator ( 1d ), which is reduced into a fluorescent quinoxaline amine ( 1e ) in the presence of GSH; concurrently, 1e (∼100 nM concentration) selectively causes the in vitro cleavage of abasic sites in DNA. 1e also binds to the tetrahydrofuran analogue of the abasic site in the nanomolar to low micromolar range depending on the nucleotide sequence opposite to the abasic site and also induces a structural change in abasic DNA. Furthermore, the amine compound ( 1e ) augments the response of the specific bifunctional alkylating drug chlorambucil at a much lower concentration in the human colorectal carcinoma cell (HCT-116), and their combination shows a potential strategy for targeted therapy. Alone or in combination, 1d and 1e lead to a cascade of cellular events such as induction of DNA double-stranded breaks and cell arrest at G 0 /G 1 and G 2 /M phases, eventually leading to apoptotic cell death in HCT-116 cells. Hence, the outcome of this study provides a definitive approach that will help optimize the therapeutic applications for targeting the abasic site in cancer cells.
Keyphrases