Login / Signup

Mechanically and Ultraviolet Light Stable Ultrathin Organic Solar Cell via Semi-Embedding Silver Nanowires in a Hydrogen Bonds-Based Polyimide.

Yongmei WangQiaomei ChenYupu WangGuangcong ZhangZhou ZhangJie FangChaowei ZhaoWeiwei Li
Published in: Macromolecular rapid communications (2022)
Ultrathin organic solar cells (OSCs) with both high power conversion efficiency (PCE) and operational stability are of great significance for the industrial applications but still challenging. Here, a polyimide (PI) substrate for high-performance and stable ultrathin OSCs, which is physically crosslinked via strong hydrogen bonds (denoted as HB-PI) to enhance the mechanical, thermal, solvent-resistant, and UV filtering properties (with a cut-off wavelength of 376 nm), is synthesized. An ultrathin flexible transparent composite electrode (FTCE, ≈7 µm) is fabricated via semi-embedding AgNWs in the HB-PI substrate. The FTCE possesses excellent optoelectronic property, smooth surface, and high mechanical stability simultaneously. Based on this FTCE, an ultrathin OSC is constructed with a PCE of 13.52% (average of 13.22%). Moreover, the ultrathin OSC shows outstanding mechanical stability (PCE decreased by less than 4% after 1000 bending cycles at a small bending radius of 0.5 mm) and superior UV light stability (no evident PCE degradation after irradiation under UV light for 10 h). This work will provide a new avenue for fabricating high-performance and stable ultrathin OSCs.
Keyphrases