Bulky PNP Ligands Blocking Metal-Ligand Cooperation Allow for Isolation of Ru(0), and Lead to Catalytically Active Ru Complexes in Acceptorless Alcohol Dehydrogenation.
Shubham DeolkaRobert R FayzullinEugene KhaskinPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
We synthesized two 4Me-PNP ligands which block metal-ligand cooperation (MLC) with the Ru center and compared their Ru complex chemistry to their two traditional analogues used in acceptorless alcohol dehydrogenation catalysis. The corresponding 4Me-PNP complexes, which do not undergo dearomatization upon addition of base, allowed us to obtain rare, albeit unstable, 16 electron mono-CO Ru(0) complexes. Reactivity with CO and H2 allows for stabilization and extensive characterization of bis-CO Ru(0) 18 electron and Ru(II) cis and trans dihydride species that were also shown to be capable of C(sp2 ) -H activation. Reactivity and catalysis are contrasted to non-methylated Ru(II) species, showing that an MLC pathway is not necessary, with dramatic differences in outcomes during catalysis between i Pr and t Bu PNP complexes within each of the 4Me and non-methylated backbone PNP series being observed. Unusual intermediates are characterized in one of the new and one of the traditional complexes, and a common catalysis deactivation pathway was identified.