Login / Signup

A Biomimetic Lubricating Nanosystem with Responsive Drug Release for Osteoarthritis Synergistic Therapy.

Cheng LiPeiwei GongMianran ChaoJuan LiLiyan YangYan HuangDandan WangJianxi LiuZhe Liu
Published in: Advanced healthcare materials (2023)
Osteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti-inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli-responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near-infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H 2 O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near-infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti-inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain-related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual-functional nanosystem for effective synergistic therapy of OA.
Keyphrases