Graphene oxide@Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion.
Shen-Ming ChenYung-Fu HsuSea-Fue WangCheng-Di DongMani GovindasamyMohamed A HabilaNajla AlMasoudPublished in: Mikrochimica acta (2021)
A sensitive voltammetric sensor has been developed for hazardous methyl parathion detection (MP) using graphene oxide@Ce-doped TiO2 nanoparticle (GO@Ce-doped TiO2 NP) electrocatalyst. The GO@Ce-doped TiO2 NPs were prepared through the sol-gel method and characterized by various physicochemical and electrochemical techniques. The GO@Ce-doped TiO2 NP-modified glassy carbon electrode (GCE) addresses excellent electrocatalytic activity towards MP detection for environmental safety and protection. The developed strategy of GO@Ce-doped TiO2 NPs at GCE surfaces for MP detection achieved excellent sensitivity (2.359 μA μM-1 cm-2) and a low detection limit (LOD) 0.0016 μM with a wide linear range (0.002 to 48.327 μM). Moreover, the fabricated sensor shows high selectivity and long-term stability towards MP detection; this significant electrode further paves the way for real-time monitoring of environmental quantitative samples with satisfying recoveries.