Login / Signup

SnO 2 -Based Memory Device with Filamentary Switching Mechanism for Advanced Data Storage and Computing.

Muhammad IsmailChandreswar MahataMyounggon KangSungjun Kim
Published in: Nanomaterials (Basel, Switzerland) (2023)
In this study, we fabricate a Pt/TiN/SnO x /Pt memory device using reactive sputtering to explore its potential for neuromorphic computing. The TiON interface layer, formed when TiN comes into contact with SnO 2 , acts as an oxygen vacancy reservoir, aiding the creation of conductive filaments in the switching layer. Our SnO x -based device exhibits remarkable endurance, with over 200 DC cycles, ON/FFO ratio (>20), and 10 4 s retention. Set and reset voltage variabilities are impressively low, at 9.89% and 3.2%, respectively. Controlled negative reset voltage and compliance current yield reliable multilevel resistance states, mimicking synaptic behaviors. The memory device faithfully emulates key neuromorphic characteristics, encompassing both long-term potentiation (LTP) and long-term depression (LTD). The filamentary switching mechanism in the SnO x -based memory device is explained by an oxygen vacancy concentration gradient, where current transport shifts from Ohmic to Schottky emission dominance across different resistance states. These findings exemplify the potential of SnO x -based devices for high-density data storage memory and revolutionary neuromorphic computing applications.
Keyphrases