Login / Signup

Mechanistic Understanding of Oxygen Activation on Bulk Au(111) Surface Using Tip-Enhanced Raman Spectroscopy.

Zhen-Feng CaiZi-Xi TangYao ZhangNaresh Kumar
Published in: Angewandte Chemie (International ed. in English) (2024)
Gaining mechanistic understanding of oxygen activation on metal surfaces is a topical area of research in surface science. However, direct investigation of on-surface oxidation processes at the nanoscale and the empirical validation of oxygen activation pathways remain challenging for the conventional analytical tools. In this study, we applied tip-enhanced Raman spectroscopy (TERS) to gain mechanistic insights into oxygen activation on bulk Au(111) surface. Specifically, oxidation of 4-aminothiophenol (4-ATP) to 4-nitrothiophenol (4-NTP) on Au(111) surface was investigated using hyperspectral TERS imaging. Nanoscale TERS images revealed a markedly higher oxidation efficiency in disordered 4-ATP adlayers compared to the ordered adlayers signifying that the oxidation of 4-ATP molecules proceeds via interaction with the on-surface oxidative species. These results were further validated via direct oxidation of the 4-ATP adlayers with H 2 O 2 solution. Finally, TERS measurements of oxidized 4-ATP adlayers in the presence of H 2 O 18 provided the first empirical evidence for the generation of oxidative species on bulk Au(111) surface via water-mediated activation of molecular oxygen. This study expands our mechanistic understanding of oxidation chemistry on bulk Au surface by elucidating the oxygen activation pathway.
Keyphrases