Login / Signup

Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia.

Qian LiRui LiStephanie B WallKatelyn DuniganChangchun RenTamas JillingLynette K RogersTrent E Tipple
Published in: American journal of physiology. Lung cellular and molecular physiology (2018)
We previously showed that the thioredoxin reductase-1 (TrxR1) inhibitor aurothioglucose (ATG) improves alveolarization in hyperoxia-exposed newborn C3H/HeN mice. Our data supported a mechanism by which the protective effects of ATG are mediated via sustained nuclear factor E2-related factor 2 (Nrf2) activation in hyperoxia-exposed C3H/HeN mice 72 h after ATG administration. Given that inbred mouse strains have differential sensitivity and endogenous Nrf2 activation by hyperoxia, the present studies utilized two C57BL/6 exposure models to evaluate the effects of ATG on lung development and Nrf2 activation. The first model (0-14 days) was used in our C3H/HeN studies and the 2nd model (4-14 days) is well characterized in C57BL/6 mice. ATG significantly inhibited lung TrxR1 activity in both models; however, there was no effect on parameters of alveolarization in C57BL/6 mice. In sharp contrast to C3H/HeN mice, there was no effect of ATG on pulmonary NADPH quinone oxidoreductase-1 ( Nqo1) and heme oxygenase-1 ( Hmox1) at 72 h in either C57BL/6 model. In conclusion, although ATG inhibited TrxR1 activity in the lungs of newborn C57BL/6 mice, effects on lung development and sustained Nrf2-dependent pulmonary responses were blunted. These findings also highlight the importance of strain-dependent hyperoxic sensitivity in evaluation of potential novel therapies.
Keyphrases