Login / Signup

Background levels of polycyclic aromatic hydrocarbons and legacy organochlorine pesticides in wheat sampled in 2017 and 2018 in Poland.

Marek Łukasz RoszkoKarolina JuszczykMagdalena SzczepańskaOlga ŚwiderKrystyna Szymczyk
Published in: Environmental monitoring and assessment (2020)
Both polycyclic aromatic hydrocarbons (PAHs) and legacy organochlorine insecticides (OCPs), including DDT, are dangerous chemical contaminants. The aims of this study were to (i) determine background levels of PAHs and legacy OCPs for wheat samples collected in 2017 and 2018 in Poland, (ii) identify differences between levels in wheat harvested in various regions of Poland, (iii) evaluate differences in contamination sources manifested by the profiles of the identified chemicals, (iv) identify possible correlations between different classes of chemicals present in wheat, and (v) assess the health risks associated with the presence of PAHs and OCPs in Polish wheat. Average concentrations found in the samples were 0.09 ± 0.03 μg kg-1 for benzo[a]pyrene (BaP) (formerly used as a single PAH marker), 0.43 ± 0.16 for the more recently introduced collective PAH 4 marker (benzo[a]anthracene + benzo[a]pyrene + chrysene + benzo[b]fluoranthene), and 1.07 ± 0.68 μg kg-1 for DDT and its metabolites. The PAH profiles indicated contamination from combustion-related emission sources (liquid fossil fuels, coal, biomass). Health risks associated with the presence of PAHs and OCPs in cereals were assessed using the margin of exposure (MOE) approach. The MOE values calculated based on the highest concentrations found in this study exceeded 50,000 for both BaP and PAH 4. The calculated worst-case scenario value for DDT and metabolites was as low as 0.3% of the respective tolerable daily intake (TDI) value. Assessment of dietary risk has shown that the presence of the two contaminant classes in Polish wheat grains is of low concern.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • drinking water
  • risk assessment
  • ms ms
  • human health
  • health risk assessment
  • climate change
  • simultaneous determination