Login / Signup

Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks.

Sven KoitkaLennard KrollEugen MalamutmannArzu OezcelikFelix Nensa
Published in: European radiology (2020)
• Our study enables fully automated body composition analysis on routine abdomen CT scans. • The best segmentation models for semantic body region segmentation achieved an averaged Sørensen Dice score of 0.9553. • Subclassified tissue volumes achieved intra-class correlation coefficients over 0.99.
Keyphrases