Login / Signup

Testing personality-pace-of-life associations via artificial selection: insights from selected lines of rainbow trout on the context-dependence of correlations.

Peter A Biro
Published in: Biology letters (2024)
More than a decade of study since the personality pace-of-life syndrome (POLS) hypotheses were first proposed, there is little support for it within species. Lack of experimental control, insufficient sampling in the face of highly labile behavioural and metabolic traits, and context dependency of trait correlations are suggested as reasons. Here, I argue that artificial selection and/or use of existing selected lines represents a powerful but under-used approach to furthering our understanding of the POLS. To illustrate this potential, I conducted a focussed review of studies that compared the behaviour, metabolism, growth and survival of an artificially selected fast-growing rainbow trout relative to wild unselected strains, under varying food and risk conditions in the laboratory and field. Resting metabolic rate, food intake, and behaviours that enhance feeding but increase energy expenditure (activity, aggression, boldness), were all higher in the fast strain in paired contrasts, under all food and risk conditions, both in the laboratory and the field. Fast-strain fish grew faster in almost every food and risk situation except where food was highly limited (or absent), had higher survival under low or zero predation risk, but had lower survival under high risk. Several other traits rarely considered in POLS studies were also higher in the fast strain, including maximum swimming speed, and hormones (growth hormone (GH), thyroid hormone (T3) and insulin-like growth factor (IGF-1)). I conclude: (i) assumptions and predictions of the POLS hypothesis are well supported, and (ii) context-dependency was largely absent, but when present revealed trade-offs between food acquisition and predation risk. This focused review highlights the potential of artificial selection in testing POLS ideas, and will hopefully motivate further studies using other animals.
Keyphrases
  • growth hormone
  • human health
  • genome wide
  • gene expression
  • case control
  • heart rate