Delayed fluorescence from a zirconium(IV) photosensitizer with ligand-to-metal charge-transfer excited states.
Yu ZhangTia S LeeJoseph M FavaleDylan C LearyJeffrey L PetersenGregory D ScholesFelix N CastellanoCarsten MilsmannPublished in: Nature chemistry (2020)
Advances in chemical control of the photophysical properties of transition-metal complexes are revolutionizing a wide range of technologies, particularly photocatalysis and light-emitting diodes, but they rely heavily on molecules containing precious metals such as ruthenium and iridium. Although the application of earth-abundant 'early' transition metals in photosensitizers is clearly advantageous, a detailed understanding of excited states with ligand-to-metal charge transfer (LMCT) character is paramount to account for their distinct electron configurations. Here we report an air- and moisture-stable, visible light-absorbing Zr(IV) photosensitizer, Zr(MesPDPPh)2, where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. This molecule has an exceptionally long-lived triplet LMCT excited state (τ = 350 μs), featuring highly efficient photoluminescence emission (Ф = 0.45) due to thermally activated delayed fluorescence emanating from the higher-lying singlet configuration with significant LMCT contributions. Zr(MesPDPPh)2 engages in numerous photoredox catalytic processes and triplet energy transfer. Our investigation provides a blueprint for future photosensitizer development featuring early transition metals and excited states with significant LMCT contributions.