Login / Signup

Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.

Jinha KwonHanna Cho
Published in: ACS biomaterials science & engineering (2020)
Piezoelectricity of Type I collagen can provide the stress-generated potential that is considered to be one of the candidate mechanisms to explain bone's adaptation to loading. However, it is still challenging to quantify piezoelectricity because of its heterogeneity and small magnitude. In this study, resonance-enhanced piezoresponse force microscopy (PFM) was utilized to amplify a weak piezoresponse of a single collagen fibril with a carefully calibrated cantilever. The quantitative PFM, combined with a dual-frequency resonance-tracking method, successfully identified the anisotropic and heterogenous nature of the piezoelectric properties in the collagen fibril. The profile of shear piezoelectric coefficient (d15) was obtained to be periodic along the collagen fibril, with a larger value in the gap zone (0.51 pm/V) compared to the value in the overlap zone (0.29 pm/V). Interestingly, this piezoelectric profile corresponds to the periodic profile of mechanical stiffness in a mineralized collagen fibril having a higher stiffness in the gap zone. Considering that apatite crystals are nucleated at the gap zone and subsequently grown along the collagen fibril, the heterogeneous and anisotropic nature of piezoelectric properties highlights the physiological importance of the collagen piezoelectricity in bone mineralization.
Keyphrases