Login / Signup

Ultra-High-Frame-Rate Ultrasound Monitoring of Muscle Contractility Changes Due to Neuromuscular Electrical Stimulation.

Zhiyu ShengNitin SharmaKang Kim
Published in: Annals of biomedical engineering (2020)
The quick onset of muscle fatigue is a critical issue when applying neuromuscular electrical stimulation (NMES) to generate muscle contractions for functional limb movements, which were lost/impaired due to a neurological disorder or an injury. For in situ assessment of the effect of NMES-induced muscle fatigue, a novel noninvasive sensor modality that can quantify the degraded contractility of a targeted muscle is required. In this study, instantaneous strain maps of a contracting muscle were derived from ultra-high-frame-rate (2 kHz) ultrasound images to quantify the contractility. A correlation between strain maps and isometric contraction force values was investigated. When the muscle reached its maximum contraction, the maximum and the mean values of the strain map were correlated with the force values and were further used to stage the contractility change. During the muscle activation period, a novel methodology based on the principal component regression (PCR) was proposed to explore the strain-force correlation. The quadriceps muscle of 3 able-bodied human participants was investigated during NMES-elicited isometric knee extension experiments. Strong to very strong correlation results were obtained and indicate that the proposed measurements from ultrasound images are promising to quantify the muscle contractility changes during NMES.
Keyphrases