Login / Signup

Enzymatic Synthesis of Eugenyl Acetate from Essential Oil of Clove Using Lipases in Liquid Formulation as Biocatalyst.

Leandro SantolinKarina G FiamettiViviane da Silva LoboJoão H C WancuraJosé Vladimir de Oliveira
Published in: Applied biochemistry and biotechnology (2021)
In this research, eugenyl acetate, a compound with flavoring, antioxidant, and antimicrobial properties, was obtained from essential oil of clove (Syzygium aromaticum) via liquid lipase-mediated acetylation. Clove essential oil was extracted by drag water vapor from dry flower buds and its physic-chemical characteristics were analyzed. For the enzymatic synthesis, an extensive evaluation of reaction parameters was accomplished through employment of distinct reaction temperatures, acetic anhydride to eugenol molar ratios, enzyme loads, and three different lipases (a lyophilized enzyme produced by solid-state fermentation of sunflower seed with Penicillium sumatrense microorganism and other two commercial lipases - Lipozyme TL 100L and CALB L). The product eugenyl acetate was confirmed by 1H-NMR, 13C-NMR Distortionless Enhancement by Polarization Transfer (DEPT 135), and Heteronuclear Multiple Bond Correlation (HMBC). Through optimized conditions (55 °C, acetic anhydride to eugenol molar ratio of 1:1, 10 wt% of Lipozyme TL 100L), 91.80% of conversion after 2 h was achieved to the eugenyl acetate production. With the results obtained, it was possible to conclude that the use of lipases in liquid formulation is a promising alternative for the synthesis of essential esters largely applied on food, cosmetic, and pharmaceutical industries.
Keyphrases