Biodegradable Polymer-Coated Multifunctional Graphene Quantum Dots for Light-Triggered Synergetic Therapy of Pancreatic Cancer.
Chengbin YangKok Ken ChanGaixia XuMingjie YinGuimiao LinXiaomei WangWei-Jen LinMuhammad Danang BirowosutoShuwen ZenTakashi OgiKikuo OkuyamaFitri Aulia PermatasariFerry IskandarChih-Kuang ChenKen-Tye YongPublished in: ACS applied materials & interfaces (2019)
In this work, we reported the synthesis of an engineered novel nanocarrier composed of biodegradable charged polyester vectors (BCPVs) and graphene quantum dots (GQDs) for pancreatic cancer (MiaPaCa-2 cells) therapy applications. Such a nanocarrier was utilized to co-load doxorubicin (DOX) and small interfering ribonucleic acid (siRNA), resulting in the formation of GQD/DOX/BCPV/siRNA nanocomplexes. The resulting nanocomplexes have demonstrated high stability in physiologically mimicking media, excellent K-ras downregulation activity, and effective bioactivity inhibition for MiaPaCa-2 cells. More importantly, laser light was used to generate heat for the nanocomplexes via the photothermal effect to damage the cells, which was further employed to trigger the release of payloads from the nanocomplexes. Such triggered release function greatly enhanced the anticancer activity of the nanocomplexes. Preliminary colony formation study also suggested that GQD/DOX/BCPV/siRNA nanocomplexes are qualified carrier candidates in subsequent in vivo tests.