Login / Signup

Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter?

Nils G Walter
Published in: BioEssays : news and reviews in molecular, cellular and developmental biology (2019)
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Keyphrases
  • single cell
  • cell therapy
  • stem cells
  • mesenchymal stem cells
  • reactive oxygen species
  • structural basis