Login / Signup

Tibolone restrains neuroinflammation in mouse experimental autoimmune encephalomyelitis.

Dalila N J MancinoAnalia LimaPaulina RoigLuis M García SeguraAlejandro Federico De NicolaLaura I Garay
Published in: Journal of neuroendocrinology (2021)
Multiple sclerosis (MS) is an immune-mediated and degenerating disease in which myelin sheaths are damaged as a result of chronic progressive inflammation of the central nervous system. Tibolone [(7α,17α)-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-in-3-one], a synthetic estrogenic compound with tissue-specific actions and used for menopausal hormone therapy, shows neuroprotective and antioxidant properties both in vivo and in vitro. In the present study, we analyzed whether tibolone plays a therapeutic role in experimental autoimmune encephalomyelitis (EAE) mice, a commonly used model of MS. Female C57BL/6 mice were induced with the myelin oligodendrocyte glycoprotein MOG 35-55 and received s.c. tibolone (0.08 mg kg -1 ) injection every other day from the day of induction until death on the acute phase of the disease. Reactive gliosis, Toll like receptor 4 (TLR4), high mobility group box protein 1 (HMGB1), inflammasome parameters, activated Akt levels and myelin were assessed by a real-time polymerase chain reaction, immunohistochemistry, and western blot analysis. Our findings indicated that, in the EAE spinal cord, tibolone reversed the astrocytic and microglial reaction, and reduced the hyperexpression of TLR4 and HMGB1, as well as NLR family pyrin domain containing 3-caspase 1-interleukin-1β inflammasome activation. At the same time, tibolone attenuated the Akt/nuclear factor kappa B pathway and limited the white matter demyelination area. Estrogen receptor expression was unaltered with tibolone treatment. Clinically, tibolone improved neurological symptoms without uterine compromise. Overall, our data suggest that tibolone may serve as a promising agent for the attenuation of MS-related inflammation.
Keyphrases