Login / Signup

Elastic NaxMoS2-Carbon-BASE Triple Interface Direct Robust Solid-Solid Interface for All-Solid-State Na-S Batteries.

Ke LuBomin LiXiaowen ZhanFan XiaOlusola J DahunsiSiyuan GaoDavid M ReedVincent L SprenkleGuosheng LiYingwen Cheng
Published in: Nano letters (2020)
The developments of all-solid-state sodium batteries are severely constrained by poor Na-ion transport across incompatible solid-solid interfaces. We demonstrate here a triple NaxMoS2-carbon-BASE nanojunction interface strategy to address this challenge using the β″-Al2O3 solid electrolyte (BASE). Such an interface was constructed by adhering ternary Na electrodes containing 3 wt % MoS2 and 3 wt % carbon on BASE and reducing contact angles of molten Na to ∼45°. The ternary Na electrodes exhibited twice improved elasticity for flexible deformation and intimate solid contact, whereas NaxMoS2 and carbon synergistically provide durable ionic/electronic diffusion paths, which effectively resist premature interface failure due to loss of contact and improved Na stripping utilization to over 90%. Na metal hosted via triple junctions exhibited much smaller charge-transfer resistance and 200 h of stable cycling. The novel interface architecture enabled 1100 mAh/g cycling of all-solid-state Na-S batteries when using advanced sulfur cathodes with Na-ion conductive PEO10-NaFSI binder and NaxMo6S8 redox catalytic mediator.
Keyphrases
  • solid state
  • reduced graphene oxide
  • quantum dots
  • gold nanoparticles
  • ionic liquid
  • room temperature