Login / Signup

Visualizing Ferroelectric Uniformity of Hf1-xZrxO2 Films Using X-ray Mapping.

Shu-Jui ChangChih-Yu TengYi-Jan LinTsung-Mu WuMin-Hung LeeBi-Hsuan LinMau-Tsu TangTai-Sing WuChenming HuEthan Ying-Tsan TangYuan-Chieh Tseng
Published in: ACS applied materials & interfaces (2021)
Hf1-xZrxO2 (HZO) is a complementary metal-oxide-semiconductor (CMOS)-compatible ferroelectric (FE) material with considerable potential for negative capacitance field-effect transistors, ferroelectric memory, and capacitors. At present, however, the deployment of HZO in CMOS integrated circuit (IC) technologies has stalled due to issues related to FE uniformity. Spatially mapping the FE distribution is one approach to facilitating the optimization of HZO thin films. This paper presents a novel technique based on synchrotron X-ray nanobeam absorption spectroscopy capable of mapping the three main phases of HZO (i.e., orthorhombic (O), tetragonal (T), and monoclinic (M)). The practical value of the proposed methodology when implemented in conjunction with kinetic-nucleation modeling is demonstrated by our development of a T → O annealing (TOA) process to optimize HZO films. This process produces an HZO film with the largest polarization values (Ps = 64.5 μC cm-2; Pr = 35.17 μC cm-2) so far, which can be attributed to M-phase suppression followed by low-temperature annealing for the induction of a T → O phase transition.
Keyphrases