Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.
Yoon Kyeung LeeKi Jun YuEnming SongAmir Barati FarimaniFlavia VitaleZhaoqian XieYounghee YoonYerim KimAndrew RichardsonHaiwen LuanYixin WuXu XieTimothy H LucasKaitlyn CrawfordYongFeng MeiXue FengYonggang HuangBrian LittNarayana R AluruLan YinJohn A RogersPublished in: ACS nano (2017)
The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH)4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.