Lie polynomials and a twistorial correspondence for amplitudes.
Hadleigh FrostLionel MasonPublished in: Letters in mathematical physics (2021)
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.
Keyphrases