Login / Signup

An Approach to Evaluate the Costs and Outputs of Academic Biobanks.

Amanda Rushnull nullDaniel R CatchpoolePeter Hamilton WatsonJennifer A Byrne
Published in: Biopreservation and biobanking (2024)
Academic biobanks commonly report sustainability challenges, which may be exacerbated by a lack of information on biobank value. To better understand the costs and supported outputs that contribute to biobank value, we developed a systematic, generalizable methodology to determine biobank inputs and publications arising from biobank-supported research. We then tested this in a small cohort ( n = 12) of academic cancer biobanks in New South Wales, Australia. A proforma was developed to capture monetary and in-kind biobank costing data from biobank managers and publicly available sources. Participating biobanks were grouped and compared according to the following two classifications: open- versus restricted-access and high versus low total annual costs. Our methodology provides a feasible approach for capturing comprehensive costing data for a defined period. Characterization of biobanks using this approach showed that median total costs, as well as median staffing and in-kind costs, were comparable for open- and restricted-access biobanks, as were the quantity and journal impact metrics of supported publications. High- and low-cost biobanks supported similar median numbers of publications; however, high-cost biobanks supported publications with higher median journal impact factor and Altmetric scores. Overall, 9 of 10 biobanks had higher Field-Weighted Citation Impact scores than the global average for similar publications. This is the first tested, generalizable approach to analyze the costs and publications arising from biobank-supported research. By determining explicit cost and output data, academic biobanks, funders, and policymakers can engage in or support informed redirection of resourcing and/or benchmark setting with the aim of improving biobank support of research.
Keyphrases
  • low cost
  • minimally invasive
  • magnetic resonance
  • big data
  • healthcare
  • magnetic resonance imaging
  • drinking water
  • squamous cell
  • deep learning