Login / Signup

Two-Dimensional Graphene-Gold Interfaces Serve as Robust Templates for Dielectric Capacitors.

Tamiru TeshomeAyan Datta
Published in: ACS applied materials & interfaces (2017)
The electronic structures of novel heterostructures, namely, graphene-Au van der Waals (vdW) interfaces, have been studied using density functional theory. Dispersion-corrected PBE-D2 functionals are used to describe the phonon spectrum and binding energies. Ab initio molecular dynamics simulations reveal that the vdW framework is preserved till 1200 K. Beyond T = 1200 K, a transition of the quasiplanar Au into the three-dimensional cluster-like structure is observed. A dielectric capacitor is designed by placing 1-4 hexagonal boron nitride (h-BN) monolayers between graphene and Au conductive plates. Charge separation between the Au and graphene plates is carried out under the effect of an external field normal to the graphene-h-BN-Au interface. The gravimetric capacitances are computed as C1 = 7.6 μF/g and C2 = 3.2 μF/g for h-BN bilayers with the Au-graphene heterostructures. The capacitive behavior shows strong deviations from the classical charging models and exemplifies the importance of quantum phenomenon at short contacts, which eventually nullifies at large interelectrode distances. The graphene-Au interface is predicted to be an exciting vdW heterostructure with a potential application as a dielectric capacitor.
Keyphrases