Login / Signup

Resting theta activity is associated with specific coding levels in event-related theta activity during conflict monitoring.

Charlotte PschererAnnet BluschkeAstrid ProchnowElena EggertMoritz MückschelChristian Beste
Published in: Human brain mapping (2020)
Brain electrical activity in the theta frequency band is essential for cognitive control (e.g., during conflict monitoring), but is also evident in the resting state. The link between resting state theta activity and its relevance for theta-related neural mechanisms during cognitive control is still undetermined. Yet, theoretical considerations suggest that there may be a connection. To examine the link between resting state theta activity and conflict-related theta activity, we combined temporal EEG signal decomposition methods with time-frequency decomposition and beamforming methods in N = 86 healthy participants. Results indicate that resting state theta activity is closely associated with the strength of conflict-related neural activity at the level of ERPs and total theta power (consisting of phase-locked and nonphase-locked aspects of theta activity). The data reveal that resting state theta activity is related to a specific aspect of conflict-related theta activity, mainly in superior frontal regions and in the supplemental motor area (SMA, BA6) in particular. The signal decomposition showed that only stimulus-related, but not motor-response-related coding levels in the EEG signal and the event-related total theta activity were associated with resting theta activity. This specificity of effects may explain why the association between resting state theta activity and overt conflict monitoring performance may not be as strong as often assumed. The results suggest that resting state theta activity is particularly important to consider for input integration processes during cognitive control.
Keyphrases
  • resting state
  • functional connectivity
  • working memory
  • transcranial magnetic stimulation
  • gene expression
  • high frequency
  • blood pressure
  • single cell
  • electronic health record