Reverse Phase Protein Array Profiling Identifies Recurrent Protein Expression Patterns of DNA Damage-Related Proteins across Acute and Chronic Leukemia: Samples from Adults and the Children's Oncology Group.
Fieke W HoffTi'ara L GriffenBrandon D BrownTerzah M HortonJan BurgerWilliam WierdaStefan E HubnerYihua QiuSteven Mitchell KornblauPublished in: International journal of molecular sciences (2023)
DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) ( n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) ( n = 361) and chronic lymphocytic leukemia (CLL) ( n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL ( n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly ( p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.
Keyphrases
- acute myeloid leukemia
- chronic lymphocytic leukemia
- liver failure
- allogeneic hematopoietic stem cell transplantation
- acute lymphoblastic leukemia
- dna damage
- bone marrow
- drug induced
- dna damage response
- respiratory failure
- hepatitis b virus
- high throughput
- amino acid
- young adults
- stem cells
- single cell
- palliative care
- binding protein
- induced apoptosis
- cell proliferation
- high density
- gene expression
- intensive care unit
- mesenchymal stem cells
- acute respiratory distress syndrome