Login / Signup

Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.

Ruoyang YaoMarien OchoaPingkun YanXavier Intes
Published in: Light, science & applications (2019)
Macroscopic fluorescence lifetime imaging (MFLI) via compressed sensed (CS) measurements enables efficient and accurate quantification of molecular interactions in vivo over a large field of view (FOV). However, the current data-processing workflow is slow, complex and performs poorly under photon-starved conditions. In this paper, we propose Net-FLICS, a novel image reconstruction method based on a convolutional neural network (CNN), to directly reconstruct the intensity and lifetime images from raw time-resolved CS data. By carefully designing a large simulated dataset, Net-FLICS is successfully trained and achieves outstanding reconstruction performance on both in vitro and in vivo experimental data and even superior results at low photon count levels for lifetime quantification.
Keyphrases
  • convolutional neural network
  • deep learning
  • high resolution
  • electronic health record
  • big data
  • artificial intelligence
  • single molecule
  • machine learning
  • living cells
  • data analysis
  • fluorescence imaging