Login / Signup

Strong Vibrational Relaxation of NO Scattered from Au(111): Importance of the Adiabatic Potential Energy Surface.

Rongrong YinYaolong ZhangBin Jiang
Published in: The journal of physical chemistry letters (2019)
Experimental observations of multiquantum relaxation of highly vibrationally excited NO scattering from Au(111) are a benchmark for the breakdown of the Born-Oppenheimer approximation in molecule-surface systems. This remarkable vibrational inelasticity was long thought to be almost exclusively mediated by electron transfer; however, no theories have quantitatively reproduced various experimental data. This was suggested to be due to errors in the adiabatic potential energy surface (PES) used in those studies. Here, we investigate electronically adiabatic molecular dynamics of this system with a globally accurate high-dimensional PES that is newly developed with neural networks from first principles. The NO vibrational energy loss is much larger than that on the earlier adiabatic PES. Additionally, the translational inelasticity and translational energy dependence of vibrational inelasticity are also more accurately reproduced. There is reason to be optimistic that electronically nonadiabatic theories using this adiabatic PES as a starting point might accurately reproduce experimental results on this important system.
Keyphrases