Effect of Lanthanum Sorption on the Behavior of Rarely Crosslinked Acidic and Basic Polymer Hydrogels during Remote Interaction.
Yevgeniy MelnikovRuslan KondaurovLaura AgibayevaPublished in: Polymers (2023)
This present study is targeted at the complex investigation of the behavior of interpolymer systems based on acidic rarely crosslinked polymeric hydrogels (polyacrylic acid hydrogel (hPAA); polymethacrylic acid hydrogel (hPMAA)) and basic rarely crosslinked polymeric hydrogels (poly-4-vinylpyridine hydrogel (hP4VP), specifically the poly-2-methyl-5-vinylpyridine hydrogel (hP2M5VP)) either in an aqueous medium or lanthanum nitrate solution. We found that the transition of the polymeric hydrogels in the developed interpolymer systems (hPAA-hP4VP, hPMAA-hP4VP, hPAA-hP2M5VP, and hPMAA-hP2M5VP) into highly ionized states leads to significant changes in electrochemical, conformational, and sorption properties of the initial macromolecules. The subsequent mutual activation effect demonstrates strong swelling of both hydrogels in the systems. The sorption efficiency of lanthanum by the interpolymer systems is 94.51% (33%hPAA:67%hP4VP), 90.80% (17%hPMAA-83%hP4VP), 91.55% (67%hPAA:33%hP2M5VP), and 90.10% (50%hPMAA:50%hP2M5VP). An advantage of the interpolymer systems (compared to individual polymeric hydrogels) is the strong growth of their sorption properties (up to 35%) due to high ionization states. Interpolymer systems can be considered new-generation sorbents for further application in the industry for highly effective sorption of rare earth metals.