The superior photocatalytic activity of TiO 2 nanocrystals with exposed high-energy (001) facets, achieved through the use of hydrofluoric acid as a shape-directing reagent, is widely reported. However, in this study, we report for the first time the detrimental effect of surface fluorination on the photoreactivity of high-energy faceted TiO 2 nanocrystals towards NO oxidation (resulting in a NO removal rate of only 5.9%). This study aims to overcome this limitation by exploring surface defluorination as an effective strategy to enhance the photocatalytic oxidation of NO on TiO 2 nanocrystals enclosed with (001) facets. We found that surface defluorination, achieved through either NaOH washing (resulting in an improved NO removal rate of 23.2%) or calcination (yielding an enhanced NO removal rate of 52%), leads to a large increase in the photocatalytic oxidation of NO on TiO 2 nanocrystals with enclosed (001) facets. Defluorination processes stimulate charge separation, effectively retarding recombination and significantly promoting the production of reactive oxygen species, including superoxide radicals (·O 2 - ), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (·OH). Both in situ diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations confirm the higher adsorption of NO after defluorination, thus facilitating the oxidation of NO on TiO 2 nanocrystals.