Optical Approach for Mapping the Intercalation Capacity of Porous Electrodes.
Zhihao FengJun YeXiaoyi LiLing LiChangxiang FangRongfei WangWeihua HuPublished in: Analytical chemistry (2023)
The intercalation capacity of a porous electrode in real batteries is not uniform spatially due to the inevitable structural and compositional inhomogeneity and site-dependent ion and electron transport features. Reliable methods to quantify the capacity distribution are highly desirable but absent so far in battery research. In this paper, a novel optical technique, oblique incident reflection difference (OIRD), was employed to monitor in situ the electrochemical ion (de)intercalation behavior of Prussian blue analogue (PBA) porous films. The OIRD signal responded synchronously to the ion (de)intercalation, and the change in the OIRD signal (Δ I ) was positively correlated with the local electrochemical capacity, thereby enabling mapping of the spatially resolved ion storage capacity of the films. Optical analysis further showed that the OIRD response originated from the ion (de)intercalation-induced dielectric constant change of PBA films. This work therefore offers an intriguing in situ and spatially resolved tool for the study of rechargeable batteries.