Photocontrolled Healable Structural Color Hydrogels.
Zhuoyue ChenJindao WuYu WangChangmin ShaoJunjie ChiZhiyang LiXuehao WangYuanjin ZhaoPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Structural color hydrogels with healable capability are of great significance in many fields, however the controllability of these materials still needs optimizing. Thus, this work presents a healable structural color hydrogel with photocontrolling properties. The component parts of the hydrogel are a graphene oxide (GO) integrated inverse opal hydrogel scaffold and a hydrogel filler with reversible phase transition. The inverse opal scaffold provides stable photonic crystal structure and the hydrogel filler is the foundation of healing. Taking advantage of the prominent photothermal conversion efficiency of GO, the healable structural color material is imparted with photocontrolled properties. It is found that the structural color hydrogel shaped in complex patterns can heal under near-infrared (NIR) irradiation. These features indicate that the optical controllable healable structural color hydrogel can be employed in various applications, such as constructing complex objects, repairing tissues, and so on.