Login / Signup

From Steklov to Neumann via homogenisation.

Alexandre GirouardAntoine HenrotJean Lagacé
Published in: Archive for rational mechanics and analysis (2020)
We study a new link between the Steklov and Neumann eigenvalues of domains in Euclidean space. This is obtained through an homogenisation limit of the Steklov problem on a periodically perforated domain, converging to a family of eigenvalue problems with dynamical boundary conditions. For this problem, the spectral parameter appears both in the interior of the domain and on its boundary. This intermediary problem interpolates between Steklov and Neumann eigenvalues of the domain. As a corollary, we recover some isoperimetric type bounds for Neumann eigenvalues from known isoperimetric bounds for Steklov eigenvalues. The interpolation also leads to the construction of planar domains with first perimeter-normalized Stekov eigenvalue that is larger than any previously known example. The proofs are based on a modification of the energy method. It requires quantitative estimates for norms of harmonic functions. An intermediate step in the proof provides a homogenisation result for a transmission problem.
Keyphrases
  • mental health
  • optical coherence tomography
  • high resolution
  • magnetic resonance
  • computed tomography
  • magnetic resonance imaging