Login / Signup

Highly Efficient Oral Iguratimod/Polyvinyl Alcohol Nanodrugs Fabricated by High-Gravity Nanoprecipitation Technique for Treatment of Rheumatoid Arthritis.

Cheng TaoFeifei LiZhenzhen MaXiaoming LiYali ZhangYuan LeJiexin WangJinxia ZhaoChaoyong LiuJianjun Zhang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.
Keyphrases