Single-molecule long-read sequencing reveals the chromatin basis of gene expression.
Yunhao WangAnqi WangZujun LiuAndrew L ThurmanLinda S PowersMeng ZouYue ZhaoAdam HefelYunyi LiJoseph ZabnerKin Fai AuPublished in: Genome research (2019)
Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely investigated, while the long-range dynamics remain poorly studied at the single-cell level. Here, we present a new experimental approach, methyltransferase treatment followed by single-molecule long-read sequencing (MeSMLR-seq), for long-range mapping of nucleosomes and chromatin accessibility at single DNA molecules and thus achieve comprehensive-coverage characterization of the corresponding heterogeneity. MeSMLR-seq offers direct measurements of both nucleosome-occupied and nucleosome-evicted regions on a single DNA molecule, which is challenging for many existing methods. We applied MeSMLR-seq to haploid yeast, where single DNA molecules represent single cells, and thus we could investigate the combinatorics of many (up to 356) nucleosomes at long range in single cells. We illustrated the differential organization principles of nucleosomes surrounding the transcription start site for silent and actively transcribed genes, at the single-cell level and in the long-range scale. The heterogeneous patterns of chromatin status spanning multiple genes were phased. Together with single-cell RNA-seq data, we quantitatively revealed how chromatin accessibility correlated with gene transcription positively in a highly heterogeneous scenario. Moreover, we quantified the openness of promoters and investigated the coupled chromatin changes of adjacent genes at single DNA molecules during transcription reprogramming. In addition, we revealed the coupled changes of chromatin accessibility for two neighboring glucose transporter genes in response to changes in glucose concentration.
Keyphrases
- single cell
- single molecule
- genome wide
- rna seq
- dna methylation
- gene expression
- atomic force microscopy
- transcription factor
- copy number
- living cells
- high throughput
- genome wide identification
- dna damage
- induced apoptosis
- healthcare
- high resolution
- mass spectrometry
- electronic health record
- cell death
- oxidative stress
- signaling pathway
- endoplasmic reticulum stress
- smoking cessation
- combination therapy