Login / Signup

From random to predictive: a context-specific interaction framework improves selection of drug protein-protein interactions for unknown drug pathways.

Jennifer L WilsonAlessio GravinaKevin Grimes
Published in: Integrative biology : quantitative biosciences from nano to macro (2022)
With high drug attrition, protein-protein interaction (PPI) network models are attractive as efficient methods for predicting drug outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and they have low precision and prediction performance; performance is often no better than random (AUROC ~0.5). Typically, PPI models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could improve prediction performance. We compared two global approaches-statistical and distance-based-and our novel per-phenotype approach, 'context-specific interaction' (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared to 0.51), and a 76-95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.
Keyphrases
  • protein protein
  • small molecule
  • adverse drug
  • healthcare
  • drug induced
  • clinical trial
  • type diabetes
  • electronic health record