Login / Signup

Biological Activities of Euphorbia peplus Leaves Ethanolic Extract and the Extract Fabricated Gold Nanoparticles (AuNPs).

Hamed A GhramhKhalid Ali KhanEssam H Ibrahim
Published in: Molecules (Basel, Switzerland) (2019)
Euphorbia peplus leaves extract (EpExt) and gold nanoparticles (AuNPs) phytofabricated with extract (EpExt-AuNPs) were investigated for biological activities. EpExt and EpExt-AuNPs were screened for: (i) anticancer activity against Hela and HepG2 cell lines; (ii) antimicrobial activity; (iii) hemolytic activity; (iv) cytotoxic or stimulatory effects; and (v) insecticidal activity. AuNPs (size 50 nm) were synthesized. (i) EpExt had a stimulatory effect (51.04%) on Hela cells and an inhibitory effect (-12.83%) on HepG2 cells while EpExt-AuNPs showed inhibitory effects (-54.25% and -59.64% on Hela and HepG2 cells respectively). (ii) Antimicrobial activity of EpExt-AuNPs was significantly higher (ranged from 11.67 mm to 14.33 mm) than that of EpExt (ranged from 5.33 mm to 6.33 mm). (iii) Both EpExt and EpExt-AuNPs displayed 100% hemolysis. (iv) A dose-dependent inhibitory effect of EpExt was observed (ranged from -48.5% to -92.1%), which was greater than that of EpExt-AuNPs (ranged from -32.1% to -69.1%) (v) EpExt-AuNPs was more lethal against mosquito larvae with lethal concentration (LC50) value (202.692 ppm) compared to EpExt (1430.590 ppm). In conclusion, EpExt-AuNPs were inhibitory against HepG2 and Hela cells, while EpExt inhibited HepG2 but stimulated Hela cells. EpExt-AuNPs had antimicrobial effects. EpExt showed dose-dependent inhibitory effects on splenic cells. EpExt-AuNPs were lethal against mosquito larvae.
Keyphrases