Login / Signup

Effects of elevated CO2 on competition between native and invasive grasses.

Heather A HagerGeraldine D RyanJonathan A Newman
Published in: Oecologia (2020)
Elevated atmospheric CO2 concentration increases the performance of invasive plants relative to natives when grown in monoculture, but it is unclear how that will affect the relative competitive abilities per se of invasive and native grasses grown together. We tested competitive outcomes for four native and four invasive perennial C3 and C4 grasses under ambient (390 ppm) and elevated (700 or 1000 ppm) CO2 concentrations in the greenhouse with non-limiting water and nutrients. We predicted that elevated CO2 would increase the competitive suppression of native grasses by invasive grasses. To test this, we determined the relative interaction intensity of biomass allocation for natives grown alone vs. those grown in native-invasive species pairs. We also measured photosynthetic traits that contribute to plant invasiveness and may be affected by elevated CO2 concentrations for species pairs in mixture to determine native-invasive relative performance. We found no effect of CO2 for the aboveground biomass and tiller production measures of interaction intensity or for relative performance for most of the measured photosynthetic traits. In competition, the invaders nearly always outperform natives in biomass and tiller production, regardless of CO2 level. The results suggest that increasing CO2 concentration alone has little effect on grass competitive outcomes under controlled conditions.
Keyphrases
  • wastewater treatment
  • air pollution
  • genome wide
  • high intensity
  • type diabetes
  • heavy metals
  • anaerobic digestion
  • carbon dioxide