Solvent-Assisted Desorption of 2,5-Lutidine from Polyurethane Films.
Devon A BoyneMark J VaradyRobert H LambethJanlyn H EikenbergStefan A BringuierThomas P PearlBrent A MantoothPublished in: The journal of physical chemistry. B (2018)
A fundamental understanding of chemical interactions and transport mechanisms that result from introducing multiple chemical species into a polymer plays a key role in the development and optimization of membranes, coatings, and decontamination formulations. In this study, we explore the solvent-assisted desorption of a penetrant (2,5-lutidine) in polyurethane with aprotic (acetonitrile) and protic (methanol) solvents. Chemical interactions between solvent, penetrant, and polymer functional groups are characterized via time-resolved Fourier transform infrared spectroscopy (FTIR) during single and multicomponent exposures. For both solvents, an increase in the extraction rate of the penetrant is observed when the solvent is applied during desorption. Inspection of the FTIR spectra reveals two potential mechanisms that facilitate the enhanced desorption rate: (1) penetrant/solvent competition for hydrogen donor groups on the polymer backbone and (2) disruption of the self-interaction (cohesive forces) between neighboring polymer chains. Finally, the aprotic solvent is found to generate an order of magnitude greater desorption rate of the penetrant, which is attributed to a greater disruption of the self-interaction during penetrant desorption compared to the protic solvent and the inability of an aprotic solvent to form larger and potentially slower penetrant-solvent complexes.