Login / Signup

Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries.

Tao ChenBaorui ChengGuoyin ZhuRenpeng ChenYi HuLianbo MaHongling LvYanrong WangJia LiangZuoxiu TieZhong JinJie Liu
Published in: Nano letters (2016)
Despite high theoretical energy density, the practical deployment of lithium-sulfur (Li-S) batteries is still not implemented because of the severe capacity decay caused by polysulfide shuttling and the poor rate capability induced by low electrical conductivity of sulfur. Herein, we report a novel sulfur host material based on "sea urchin"-like cobalt nanoparticle embedded and nitrogen-doped carbon nanotube/nanopolyhedra (Co-NCNT/NP) superstructures for Li-S batteries. The hierarchical micromesopores in Co-NCNT/NP can allow efficient impregnation of sulfur and block diffusion of soluble polysulfides by physical confinement, and the incorporation of embedded Co nanoparticles and nitrogen doping (∼4.6 at. %) can synergistically improve the adsorption of polysulfides, as evidenced by beaker cell tests. Moreover, the conductive networks of Co-NCNT/NP interconnected by nitrogen-doped carbon nanotubes (NCNTs) can facilitate electron transport and electrolyte infiltration. Therefore, the specific capacity, rate capability, and cycle stability of Li-S batteries are significantly enhanced. As a result, the Co-NCNT/NP based cathode (loaded with 80 wt % sulfur) delivers a high discharge capacity of 1240 mAh g-1 after 100 cycles at 0.1 C (based on the weight of sulfur), high rate capacity (755 mAh g-1 at 2.0 C), and ultralong cycling life (a very low capacity decay of 0.026% per cycle over 1500 cycles at 1.0 C). Remarkably, the composite cathode with high areal sulfur loading of 3.2 mg cm-2 shows high rate capacities and stable cycling performance over 200 cycles.
Keyphrases
  • carbon nanotubes
  • solid state
  • ion batteries
  • highly efficient
  • physical activity
  • stem cells
  • solar cells
  • mental health
  • single cell
  • cancer therapy
  • early onset
  • gold nanoparticles
  • cell therapy
  • drug induced