Login / Signup

Extension and improvement of the methanol-d4 NMR thermometer calibration.

Niels KarschinStephan KrenekDieter HeyerChristian Griesinger
Published in: Magnetic resonance in chemistry : MRC (2021)
NMR thermometers are a convenient way to determine the temperature inside the sample of an NMR spectrometer. They rely on signals with strongly temperature-dependent chemical shifts, often of OH groups; 99.8% perdeuterated methanol is an established example which is particularly well suited for modern, high-sensitivity spectrometers, but it is so far calibrated only in the range of 282 to 330 K. In this work, we extend this calibration to the entire liquid range of methanol, 175 to 338 K. Additionally, we use a temperature sensor calibrated traceably to the International Temperature Scale (ITS-90) and accounted for the magnetic field effect on the sensor, yielding a more accurate calibration curve with an uncertainty (2σ) varying between 25 and 190 mK.
Keyphrases
  • high resolution
  • magnetic resonance
  • solid state
  • carbon dioxide
  • low cost
  • mass spectrometry
  • ionic liquid
  • molecularly imprinted
  • liquid chromatography