Login / Signup

Photoinduced Metal-Free Surface Initiated ATRP from Hollow Spheres Surface.

Chun-Na YanQian LiuLin XuLi-Ping BaiLi-Ping WangGuang Li
Published in: Polymers (2019)
Well-defined amphiphilic diblock copolymer poly (methyl methacrylate)-b-poly (N-isopropylacrylamide) grafted hollow spheres (HS-g-PMMA-b-PNIPAM) hybrid materials were synthesized via metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiators α-Bromoisobutyryl bromide (BIBB) were attached onto hollow sphere surfaces through esterification of acyl bromide groups and hydroxyl groups. The synthetic ATRP initiators (HS-Br) were further used for the metal-free SI-ATRP of methyl methacrylate (MMA) and N-isopropyl acrylamide (NIPAM) using 10-phenylphenothiazine (PTH) as the photocatalyst. The molecular weight of the polymers, structure, morphology, and thermal stability of the hybrid materials were characterized via gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), ¹H-nuclear magnetic resonance spectroscopy (¹H NMR), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), respectively. The results indicated that the ATRP initiator had been immobilized onto HS surfaces successfully followed by metal-free SI-ATRP of MMA and NIPAM, the Br atom had located at the end of the main PMMA polymer chain, and the polymerization process possessed the characteristic of controlled/"living" polymerization. The thermal stability of the hybrid materials was increased significantly compared to the pure PMMA and PNIPAM.
Keyphrases