Improving Perturbation Theory for Open-Shell Molecules via Self-Consistency.
Tran Nguyen LanPublished in: The journal of physical chemistry. A (2021)
We present an extension of our one-body Møller-Plesset second-order perturbation (OBMP2) method for open-shell systems. We derived the OBMP2 Hamiltonian through the canonical transformation followed by the cumulant approximation to reduce many-body operators into one-body ones. The resulting Hamiltonian consists of an uncorrelated Fock (unperturbed Hamiltonian) and a one-body correlation potential (perturbed Hamiltonian) composed of only double excitations. Molecular orbitals and associated energy levels are then relaxed via self-consistency, similar to Hartree-Fock, in the presence of the correlation at the MP2 level. We demonstrate the OBMP2 performance by considering two examples well-known for requiring orbital optimization: bond breaking and isotropic hyperfine coupling constants. In contrast to noniterative MP2, we show that OBMP2 can yield a smooth transition through the unrestriction point and accurately predict isotropic hyperfine coupling constants.